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ABSTRACT
Identifying source code that has poor readability allows develop-
ers to focus maintenance efforts on problematic code. Therefore,
the effort to develop models that can quantify the readability of
a piece of source code has been an area of interest for software
engineering researchers for several years. However, recent research
questions the usefulness of these readability models in practice.
When applying these models to readability improvements that are
made in practice, i.e., commits, they are unable to capture these
incremental improvements, despite a clear perceived improvement
by the developers. This results in a discrepancy between the models
we have built to measure readability, and the actual perception of
readability in practice.

In this work, we propose a model that is able to detect incremen-
tal readability improvements made by developers in practice with
an average precision of 79.2% and an average recall of 67% on an
unseen test set . We then investigate the metrics that our model
associates with developer perceived readability improvements as
well as non-readability changes. Finally, we compare our model
to existing state-of-the-art readability models, which our model
outperforms by at least 23% in terms of precision and 42% in terms
of recall.

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Computing methodologies→ Machine learning.

KEYWORDS
Source code readability, Machine learning, Code quality.
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1 INTRODUCTION
In the past 40 years, researchers in the software engineering com-
munity have been studying various factors that effect program
comprehension, including the source code lexicon, comments, and
readability [5, 8, 9, 25, 26, 47, 49, 57]. Studies have shown that
roughly half of the cost of software maintenance stems from activi-
ties related to program comprehension [13], and developers spend
the majority of their time understanding source code [48, 50, 53, 58].

Thus, an important aspect of software that developers must be
mindful of during development, review, and maintenance activities
is source code readability. What is considered as ’readable’ source
code can vary based on individual, project, or even team preference.
Researchers have long since aimed to develop models that can
distinguish readable source code from non-readable source code
[6, 8, 15, 34, 39, 45], with the goal of creating tools to help developers
focus maintenance efforts. These models have been shown to have
good performance, with accuracy numbers as high as 85% [45],
when classifying a method or file as readable or non-readable.

However, recently, several models for the detection of source
code readability have come under question regarding the extent
of their usefulness in practice. Research by Pantiuchina et al. [38]
has shown that more often than not, in practice, state-of-the-art
code quality models are unable to capture quality improvements
in the source code. In other words, in the context of incremental
changes made to a pre-existing file, models are unable to capture
improvements in the source code’s cohesion, complexity, coupling,
and readability. Recently, we found that there exists a significant
discrepancy between the readability models created by researchers
and developers’ perception of readability improvements in practice,
as captured in commit messages [16]. When applying these models
to both versions of a file, before and after the change was made,
readability improvements can only be captured 40% of the time.

Possible reasons for the poor performance of these models in
practice could be attributed to the selection of external developers,
types of source code snippets, and classification of snippets on a
5-point Likert scale from ‘readable’ to ‘unreadable’. In fact, multi-
ple state-of-the-art models in software engineering have relied on
datasets derived by categorizing the readability of code snippets by
developers using such scale, in order to create an oracle from which
to derive metrics [8, 15, 45]. Thus, these models are not created to
detect the kind of readability improvements made in practice by
internal developers, which are often incremental in nature. Instead,
they are developed with the intent to rank readability on a universal
scale with two extremes.
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Results from our previous work [16] highlights a clear need for a
readability model that is able to successfully capture readability im-
provements in practice. We identify several promising metrics that
are able to successfully capture these improvements and should be
considered by future readability models. In this paper, we expand
upon our initial work by proposing a novel readability model that
successfully identifies readability improvements made by develop-
ers in practice, achieving a precision of 79.2% and a recall of 67%.
The proposed approach outperforms existing models by at least
23%.

The main contributions of this work are as follows:

(1) An expanded dataset previously made available by Fakhoury
et al. [16]. We increased the dataset by adding 886 new com-
mits from 13 additional Java projects.

(2) Manually validated a total of 2,781 new files for both read-
ability and non-readability improvement commits.

(3) Proposed a novel model for the detection of readability im-
provements made in practice.

(4) We provide a replication package, including the expanded
dataset and files needed to reproduce the results [42]

Paper Structure. The rest of the paper is organized as follows.
In Section 2, we present the study definition and design, including
discussion of the research questions, data collection procedures,
source code analysis tools, and the proposed approach. We answer
the research questions in Section 3 and discuss the implications of
our work in Section 4. We survey the related work in Section 5 and
discuss the threats to validity of our work in Section 6. We conclude
the paper in Section 7.

2 STUDY DEFINITION AND DESIGN
The goal of this study is to create a model that is able to capture
incremental readability improvements in Java source code. The
quality focus is the performance of the proposed model, as well as
the features that contribute to the model. The perspective of the
study is that of researchers and developers, who are interested in
measuring readability improvements during software maintenance
tasks. The evaluation is carried out on 2665 commits with readabil-
ity improvements from 76 engineered Java projects collected from
GitHub1.

Figure 1 depicts the overview of our approach. First, we expand
upon the initial oracle in our previous work [16] by collecting
commits from engineered open source Java projects on GitHub. To
construct the oracle—described in Section 2.2.2—we extract commits
that contain both readability and non-readability improvements, as
denoted by the authors of the commits in their commit messages.
This dataset is then manually validated by two annotators and
an oracle is created. We separate this oracle into a training and
testing set. Next, we use a set of static code analysis tools, such as
SourceMeter [27] and PMD [1], to collect metrics on files involved
in the commits.

For each readability and non-readability commit in the oracle,
metrics are collected on files before and after changes are made.
Descriptions of the tools and methods used can be found in Sec-
tion 2.3. Using these metrics as input to various machine learning

1https://github.com

algorithms, we perform automatic feature selection and hyper-
parameter tuning. We use the best performing configuration of
these two steps to devise our model; details about the approach are
provided in Section 2.4. The model is then evaluated on the test set
using a set of evaluation metrics and compared to state-of-the-art
readability models; details are provided in Section 2.5.

2.1 Research Questions
(1) RQ1: Can we use machine learning to capture readabil-

ity improvements made in practice?
Motivation: Recent research has shown that existing state-
of-the-art readability models are unable to capture readabil-
ity improvements made in practice when applied to incre-
mental software changes. Furthermore, there seems to exist
a discrepancy between existing models and developers’ per-
ception of readability. Creating a model that is able to detect
incremental improvements in source code readability is the
first step towards advancing tools that are designed to help
developers focus maintenance efforts.
Approach:We expand upon the intial dataset introduced in
our previous work [16] and use seven different static code
analysis tools to extract metrics for our model. We then use
a combination of automatic feature selection techniques to
create our feature set. We explore various machine learning
algorithms to create a model that can successfully identify
incremental readability improvements made in practice.

(2) RQ2:What features alignwith developers’ perception of
readability improvements in practice?
Motivation: By investigating the features our model relies
on for accurate detection of readability improvements, we
can gain a deeper understanding into which metrics are most
strongly aligned with developers’ perception of readability
in practice.
Approach: We perform a qualitative analysis on the set
of top features selected by our model. We explore which
of these features can help improve readability in practice
and compare them to the readability recommendations that
currently exist.

(3) RQ3: How does the proposed model perform when com-
pared to existing state-of-the-art readability models?
Motivation: By investigating how and why our model per-
forms against existing readability models, we can gain a
deeper understanding about how certain features contribute
to readability improvements in different development con-
texts.
Approach: We select three state-of-the-art readability mod-
els and run them on our oracle. We then compare their preci-
sion and recall with that of our proposed model and perform
qualitative analysis of our findings.

2.2 Data Collection
2.2.1 Subject Systems. Our dataset consists of 5104 data points
from 2665 commits in 76 projects. Each data point in the dataset
represents metrics collected for a file at a specific revision in its
git repository, and is labelled as either a readability improvement

2
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Figure 1: Overview of the approach.

Oracle # Projects # Commits # Files

Original [16]
Readability 63 548 2323
Non-Readability 1231* 2275*
Total 63 1779 4598

Expanded
Readability 76 653 2449
Non-Readability 2008 2661
Total 76 2661 5110

Table 1: Project, commit andfile statistics for theOracle used
in our initial work and the expanded version used in this pa-
per. *The expanded dataset contributes 2661 validated non-
readability files.

or not. Our dataset is a combination of the oracle we constructed
in [16] and data from new Java projects we identified on GitHub.
Table 1 outlines how our oracle compares to the original in terms
of the number of projects and the number of readability and non-
readability commits and files. We added 13 new projects and 882
commits. Given that non-readability data points from the original
dataset were not validated, the expanded dataset contributes 2,661
validated non-readability files. This is a total of 2,781 new data
points.

2.2.2 Oracle Creation. We follow a similar oracle construction
methodology as in [16] and expand upon our dataset by adding
new data points from engineered Java projects. An engineered
project is a software project that leverages sound principles of
software engineering across various aspects such as soure code,
documentation and testing [37]. In the original dataset, we only
validate commits belonging to readability improvements. Two an-
notators, the authors of this paper, manually validate all data points
in our oracle, including the commits that do not contain readability
improvements. If the annotators had a doubt and could not decide,

the data point was discarded. The number of discarded data points
were less than 5%. The procedure to create the oracle is outlined
below:

(1) Identify suitable Java projects using Reaper [37], a tool that
calculates a score for GitHub repositories to determinewhether
they are engineered projects or not.

(2) Identify candidate readability improvement commits in a
project by using a keyword match on the commit message us-
ing keywords: ‘readable’, ‘readability’, ‘easier to read’, ‘com-
prehension’, ‘comprehensible’, ‘understand’, ‘understanding’,
and ‘clean up’. We manually validate and exclude commits
that contain the keywords but do not explicitly reflect read-
ability improvements of the source code. For example, com-
mit messages stating the improvement of the readability of
UI elements for user-facing applications.

(3) Commits containing readability improvements might also
contain other types of changes, such as bug fixes. To en-
sure that only files that contain readability improvements
are included in the oracle, we manually untangle commits
by excluding the files that contain changes not related to
readability.

(4) Randomly sample data points that do not contain readability
improvements from the remaining commits for each project.
We manually validate each commit, to make sure commits
do not contain readability improvements. For example, an
ambiguous commit that contains added functionality but
also replaces pre-existing magic numbers with a constant.

2.3 Source Code Analysis Tools
In order to create a model that can distinguish between readability
and non-readability changes, we must identify features that can
capture the differences in both categories. We use seven different
source code analysis tools that collect a wide variety of source code

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Devjeet Roy, Sarah Fakhoury, John Lee, and Venera Arnaoudova

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

metrics at a file level. By running these tools on versions of the
source code before and after a readability or non-readability change
was made, we can capture the differences in metrics caused by the
change. These differences then become the defining features for
our model. We use all five of the tools originally explored in [16],
and add two new tools: RSM and Coming. We describe the tools
and the types of metrics they collect in the following paragraphs.

2.3.1 SourceMeter. SourceMeter [27] is a static analysis tool that
computes a large variety of source code quality metrics. These
metrics are grouped into 6 categories: cohesion, complexity, cou-
pling, documentation, inheritance, and size. Complexity metrics,
for example, include Halstead Effort (HE), McCabe’s Cyclomatic
Complexity (McCC), and Weighted Methods per Class (WMC).

2.3.2 Checkstyle. Checkstyle [7] is a static analysis tool which
checks source code adherence to configurable rules.We use the stan-
dalone version of Checkstyle, along with two of the configuration
files provided by Checkstyle, sunchecks.xml and googlechecks.xml,
modified to add a warning for magic numbers. For each file in a
commit, we run the tool on the version of the file before and af-
ter the change. We then compute the difference in the number of
warnings between the before and after versions of a file.

2.3.3 RSM. Resource Standard Metrics (RSM) [2] is a fast and light-
weight command line tool for gathering source code metrics. RSM
can calculate several metrics pertaining to file diff information, such
as new comment lines, removed logical lines of code and added
non-logical lines of code. We use RSM metrics to capture impor-
tant changes that are often made by developers during readability
improvements, for example adding and updating documentation or
formatting changes.

2.3.4 Coming. Coming [30] is a tool that mines code change pat-
terns on git commits. Coming computes fine-grained code changes
between two consecutive revisions, and can be used to analyze
those changes to determine if they correspond to an instance of a
change pattern. In this study, Coming is used for its ability to detect
fine grained changed made in files at each commit in our dataset.

2.3.5 PMD. PMD [1] is a cross-language static source code ana-
lyzer. It detects common poor programming practices and issues
related to coding style, design, documentation, and performance.
We use the warnings generated by PMD on a file before and af-
ter a commit to help identify differences between readability and
non-readability improvements.

2.3.6 ChangeDistiller. ChangeDistiller [17] as a tool that extracts
and categorizes statement level changes in Java source code. ChangeDis-
tiller uses the abstract syntax tree (AST) of the source code to ex-
tract fine grained changes using the change distiller algorithm [18].
Statement level source code changes are classified according to 41
different change types. For each file, we compute the total number
of changes belonging to each of the 41 types.

2.3.7 RefactoringMiner. RefactoringMiner detects refactorings across
the history of Java projects, using the RMiner technique as pro-
posed by Tsantalis et al. [51]. It supports 21 refactoring types, such
as Extract Method, Move Method, Replace Variable with Method,

and Parameterize Variable. RefactoringMiner has 98% precision and
87% recall.

2.4 Approach
2.4.1 Model Building Process. Before we begin the model building
process, we randomly extracted 10% of the data into a holdout
or test set. Only the training set was used for the entire model
building process, including all aspects of feature selection, model
selection and hyperparameter optimization. The train/test split was
conducted so that data from the same project could only exist in
one of the two sets. This was done to prevent information leakage
from the test to the train set, enabling test set performance to serve
as an estimator of model’s ability to generalize.

Model creation was performed incrementally using the training
set, employing 10-fold nested cross validation [52]. During the cross
validation phase, each combination of imputation technique, feature
selection technique and model selection was performed for each
fold. Once the model was built and trained on the training set, it was
evaluated using performance metrics described below. The focus
here was to identify and use the best, i.e., unbiased, model building
process rather than building the best model. This model building
process consists of several steps: feature scaling, imputation of
missing values, feature pruning, feature selection, model selection,
and hyperparameter optimization algorithm selection. Performing
this process for each fold is critical in reducing selection bias as can
happen when these steps are performed on the entire training and
validation sets [3]. Once the best model building procedure was
identified, we used the same methodology on the entire training
set to build the model, and then evaluated its generalization ability
on the test set that was set aside at the beginning of the process.

2.4.2 Initial Feature Pruning. We performed an exploratory inves-
tigation of the features in our data to prune irrelevant features, such
as line and column numbers. We also analyzed the number of miss-
ing datapoints that had missing data for every given feature. We
found that that both ChangeDistiller and RefactoringMiner were
missing for more than 60% of the columns, and they were thereby
excluded. However, the removal of these two tools represented a
significant loss of information for our model to learn from; namely
the nature of changes and refactorings made. Hence, we looked for
tools to replace them. In order to replace change information pro-
vided by ChangeDistiller, we use Coming, which provides change
information at a finer granularity than ChangeDistiller. However,
we were not able to find a suitable replacement for Refactoring-
Miner, and as a result, our model does not take into account any
refactoring changes.

2.4.3 Missing Value Imputation. Our data has several features
which contain a significant amount of missing values (up to 863
out of 5100), due to tool failure. Therefore, missing value imputa-
tion was a major consideration in the model design process. We
used four different types of single imputation for the purposes of
building this model. In single imputation, missing values are filled
using an estimate of what the value should be based. This can be
done by simple using a summary statistic such as the mean of the
non-missing values or using regression to predict the missing value
based on other features. We tried using mean, median, and constant
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value imputation, as well as imputation by chained equations [55].
For constant value imputation, we simply replaced all missing val-
ues with zeros. In addition, when evaluating tree based models, we
also provided the models with the data without any imputation due
to their inherent robustness to and handling of missing values.

2.4.4 Automatic Feature Selection. Due to the large number of
features from the static analysis tools, we performed automatic
feature selection before providing training examples to all the mod-
els we evaluated. We perform this in two passes. In the first pass,
we remove features with 0 variance. This is done before the cross-
validation phase, to remove features that are clearly redundant.
Next, during the cross validation, we apply a random forest based
feature elimination algorithm known as the Boruta algorithm [43].
The Boruta algorithm is a wrapper method that uses random forests
to perform feature selection. It offers several benefits over Recur-
sive Feature Elimination (RFE) [19], a widely used feature selection
technique. Unlike RFE, which strives to create the minimum subset
of relevant features, Boruta captures all-relevant features; features
that could potentially be pruned by RFE due to their low importance
are selected by Boruta if they are relevant to making a prediction
in a relatively number of instances. Although this might result in a
slightly larger set of features than RFE, it also holds the potential to
improve model performance, as we found to be the case during our
evaluation. Secondly, it does not always remove correlated features,
which is beneficial for model performance in some scenarios. For
example, difference in the number of logical lines of code and lines
of code changed by a commit might be highly correlated, but the
presence of both features is important in the context of classifying
readability improving commits; removing one removes important
information regarding the number of formatting changes that did
not affect the functionality of the source code.

2.4.5 Model Selection. We started the model selection process by
evaluating several classical algorithms, including Logistic Regres-
sion, Support Vector Machines, Naive Bayes, k-Nearest Neighbors
and Decision Trees. Linear models performed very poorly on our
dataset, which is to be expected considering the high degree of mul-
ticollinearity of the features. For example, RSM reports effective,
logical and total lines of code, which are highly correlated. Simi-
larly, Naive Bayes does not perform any better due to its assump-
tion of conditional independence. k-Nearest Neighbors performed
marginally better. The models that did perform well were tree based
methods, including ensemble methods. Tree based methods have
been used specially in the domain of fault prediction [22, 33, 54, 60].
The main benefits they offer in ours case is that they are not highly
affected by multi-collinearity, they are robust to noise, perform
implicit feature selection, and are easier to interpret than other
models listed above. We evaluated 5 tree based methods, including
Random Forests, Gradient Boosted Trees, AdaBoost, XGBoost [10]
and LightGBM [23]. Out of these, we selected XGBoost based on
the quality and consistency of its performance.

2.4.6 Parameter Optimization. The parameter optimization proce-
dure we use is 10 fold cross validated grid search. For XGBoost, we
optimize the following hyperparameters: maximum depth, number
of estimators and minimum weight for a new child node.

2.5 Evaluation
We evaluate our models using the following metrics:

2.5.1 Precision. Precision is defined as the ratio of number of true
positives (TP) to the sum of the TP and the false positives (FP). Pre-
cision can vary from 0 to 1, the latter indicating a perfect precision.

2.5.2 Recall. Recall is calculated as the ratio of the number of true
positives to the sum of the true positives and the false negatives
(FN). The higher the recall the better, with 1 indicating a perfect
recall.

2.5.3 F-measure. F-measure or F1 score is the harmonic mean of
precision and recall. As precision and recall are inversely related,
F1 score allows to combine both metrics in one score.

F1 = 2 ·
Precision · Recall

Precision + Recall

2.5.4 Area Under Curve (AUC)-Receiving Operator Characteristic
(ROC). ROC is a plot of the TP rate against the FP rate at various
discrimination thresholds. The area under ROC is close to 1 when
the classifier performs better and close to 0.5 when the classification
model is poor and behaves like a random classifier.

2.5.5 Matthews Correlation Coefficient (MCC). MCC is a measure
used in machine learning to assess the quality of a binary classifier
especially when the classes are unbalanced [31].

MCC =
TP ·TN − FP · FN√

(TP + FP)(FN +TN )(FP +TN )(TP + FN )

Values range from -1 to 1. Zeromeans that the approach performs
like a random classifier. Other correlation values are interpreted
as follows: MCC < 0.2: low, 0.2 ≤ MCC < 0.4: fair, 0.4 ≤ MCC <
0.6: moderate, 0.6 ≤ MCC < 0.8: strong, and MCC ≥ 0.8: very
strong [12].

2.5.6 Comparison to state-of-the-art models. Building on our work
in [16], we compare our model to three state-of-the-art readability
models which assess different aspects of the source code. The first
model we used is proposed by Scalabrino et al. [45] and uses metrics
that measure the quality of the source code lexicon as a proxy of
readability. The second model we consider is proposed by Dorn et
al. as a generalizable model for source code readability [15]. This
model relies on features like visual, spatial, alignment, and linguistic
aspects of the source code. We use the implementation provided by
Scalabrino et al. in their paper comparing state-of-the-art readability
models [45]. The last model we consider is also implemented by
Scalabrino et al. [45], but is a combination of multiple state-of-the-
art readability models. We refer to this model as the Combined
model. It combines the first two models as well as Buse & Weimer’s
model [8] and Posnett’s model [39]. This model is shown to have the
highest accuracy scores when evaluated against all the individual
models on the same dataset.

The model we propose in this paper classifies the changes intro-
duced at a file in a commit as either a readability improvement or
not. However, the state-of-the-art models we consider measure the
readability of a file on a scale. To make valid comparisons with our
model, we measure the readability scores of these models on the
before and after snapshots of a file for a given commit, and mark an
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Metric CV(%) Test(%)

Precision 69.4 79.2
Recall 59.3 67
MCC 0.41 0.39
F-1 63.9 72.6
ROC-AUC 70 70

Table 2: Precision, Recall and F-1 score of proposed model
for 10 fold cross validation (CV) and the test set.

Metric Non-Readability Readability

Precision 72.8 69.4
Recall 80.6 59.3
F1 76.5 63.9

Table 3: Precision, Recall and F-1 score of proposed model
for 10 fold cross validation.

P. Non-Readability P. Readability Total

Non-Readability 141 52 193
Readability 98 199 297

Total 239 251 490
Table 4: Confusion matrix for the proposed model.

increase in the score as a readability improvement. Scores that stay
the same or decrease are not considered readability improvements.
This allows us to compare these models to our approach.

2.5.7 Shapley Additive Explanations (SHAP). In order to investigate
the impact of different source code metrics on the model’s predic-
tions, we employ the use of SHapley Additive exPlanations [28], a
unified framework used to identify the role of individual features
in a model’s predictions using a game theoretic approach. For a
given input, SHAP is able to identify whether a given feature raises
or decreases the model’s output, and the weight of the feature for
making that decision. For tree based models, SHAP offers an ex-
act algorithm to determine the contribution of each feature in a
decision made by the model. We utilize it to identify features that
are aligned with developer’s perceptions of incremental readability
improvements.

3 RESULTS
3.1 RQ1: Can we use machine learning to capture

readability improvements made in practice?
Table 2 reports the performance of the proposed model for the 10
fold cross validation and the hold out test set. The model achieves
an average precision and recall of 69.4% and 59.3% respectively. This
results in an average F-1 score of 63.9% and MCC of 0.41 (moderate).
On the test set, the model achieves better performance, at 79.2%
precision, 67% recall, 0.39 MCC (fair), 72.6% F-1 and 70% AUC-ROC.
The model performs better on the test set, which could be due to

several factors. For example, the model training on a larger dataset,
as well as the nature of the projects that were randomly selected
for the test set.

Table 4 shows the confusion matrix of our model’s predictions
for the test set. 297 (60.1%) out of the 490 examples in our test set
were readability improvements. Out of these, our model was able to
classify 199 correctly, while classifying the remaining 98 examples
incorrectly. Hence, our model is able to identify readability commits
with a reasonable degree of recall (67%). However, it is conservative
in its approach, falsely classifying 98 examples.

We manually investigated a sample of training examples to iden-
tify the nature of the mistakes made by the model. We observed
that for some files, the readability commit affected only a single line.
Since many of the tools we use to collect metrics measure at a file
level, this would result in most of the these metrics remaining the
same before and after the readability commit, and as a result, most
of the features of our model would be zero. We only expected to
find metrics reported from coming and RSM for these cases. Com-
ing detects changes at sub-statement granularity, whereas RSM
measures changes not just in lines of code, but also effective lines
of code, comment lines of code and logical lines of code.

This was especially the case for certain examples where only
formatting changes were made to a very small number of lines
of code (less than 5). A similar issue lies in changes that affect
only comments, as most tools do not collect exhaustive metrics for
source code comments; the only metrics that picked up changes in
comments were reported by RSM. Coming supports detection of
changes in comments according to its documentation, but it didn’t
detect any for our dataset despite their presence.

Another observation we made during our manual investigation
was that often, non-readability changes introduce changes in a
source code that result in features changing in a manner similar to
that for readability changes. For example, in one case, we observed
that a method was introduced into a class to add functionality. In
order to add this method, source code from another method had to
be refactored in a way that improves readability. As a result, the sig-
nal for both the features associated with readability improvements
and non-readability changes were strong.
RQ1 Summary: Our readability model is able to identify devel-
oper perceived readability improvements in source code with
79.2% precision and 67% recall on the test set.

3.2 RQ2: What features align with developers’
perception of readability improvements in
practice?

A visualization of the SHAP values for our top features is shown in
Figure 2. In the figure, for each feature, the SHAP values are plotted
on the x-axis, while feature values are represented on the y axis, as
a scatterplot. Features on the y-axis are sorted in descending order
of their overall importance to the model. Each point is shaded based
on the gradient shown; when feature values are high, their color
is closer to red, whereas when feature values are low, their color
is closer to blue. The SHAP values shown on the x-axis indicate
both the magnitude and the direction of the impact of a given
point. Combining these two pieces of information provides us a
good picture of the impact of a feature on the model’s predictions.
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For example, for the feature UPD_Class_Package, if we consider
the rightmost point that is colored red, it means that a high value
of UPD_Class_Package results in a large positive impact on the
model’s output.

We observe from Figure 2 that when the number of effective
lines of code that change (Dif_Av.eLOC% and Dif_eLOC), change
in comment density (CD) and change in comment lines of code
(Dif_Comment) are high, the model tends to classify the change
as a readability improvement. This falls in line with our intuition;
in readability changes, developers tend to modify existing lines of
code rather than introducing new lines of code, introduce new com-
ments (thereby increasing comment density) and update existing
comments. On the other hand, we observe that high values of the
number of effective lines, logical lines and comment lines of code
that remain unchanged (Equ_eLOC, Equ_lLOC and Equ_Comment)
drive the model towards classifying a change as a non-readability
change. In addition, an increase in the total lines of code (TLOC)
is associated with non-readability change prediction by the pro-
posed model. This indicates that changes in which existing lines
of code are not changed, but instead either new lines are added or
existing lines are completely removed tend to be identified by the
proposed model as non-readability changes. We investigated some
of these non-readability changes to find that this was indeed the
case, especially for changes that introduced new functionality.

We note that the several lines of code metrics discussed above are
highly correlated, yet highly important to the model. Although their
inclusion would give the impression of redundancy, we hypothesize
that they help the model detect large formatting changes in the
source code. For example, for a change that only consists of a
large number of formatting changes, the number of logical lines
of code remains the same, but the total number of lines of code
is likely to change. The model, however, is unaware of the nature
of the formatting change, i.e. whether the change had a positive
or negative impact on readability. We manually inspected several
examples in our dataset to find this to be the case, however, further
investigation on a larger data set is needed to establish conclusively
whether this holds true in general.

Several software complexity metrics, such as Halstead Effort
(HEFF), Halstead Program Length (HPL), McCabe’s Cyclomatic
Complexity (McCC) and Halstead’s Number of Delivered Bugs
(HNDB), drive the model to classify a change as a non-readability
change. Although readability and complexity are separate dimen-
sions of software quality, we observe that for our dataset, developer
perceived readability and several complexity metrics are correlated.
This aligns with the observation we made earlier regarding how
lines of code metrics change for non-readability changes; they tend
to introduce new lines of code that can potentially have a negative
impact on source code complexity.

RQ2 Summary: Developer perceived readability improvements
are characterized by greater changes to existing lines of code,
while non-readability changes tend to add new lines of code
and leave existing lines untouched. Non-readability changes are
also associated with increased values of several software quality
metrics such as Halstead Effort, Halstead Number of Delivered
Bugs and McCabe’s Cyclomatic Complexity.

Dorn Scalabrino Combined

Precision 42.6 41.34 44.05
Recall 40.25 40.00 36.71
F-1 39.70 38.89 38.19
MCC 0.00 -0.01 0.03
ROC-AUC 50.55 49.58 51.85

Table 5: Mean 10 fold cross validationmetrics for three state
of the art readability models.

Dorn Scalabrino Combined

Precision 60.00 64.51 62.22
Recall 41.14 47.14 37.71
F-1 49.00 54.47 46.96
MCC -0.01 0.07 0.02
ROC-AUC 49.46 53.62 51.24

Table 6: Test set metrics for three state of the art readability
models.

3.3 RQ3: How does the proposed model perform
when compared to existing state-of-the-art
readability models?

In order to answer this research question, we use three state of the
art readability models: Dorn’s model, Scalabrino’s model and the
combined model, and compare their performance on our test set to
the proposed model. For each model, we calculate the readability
scores for a file before and after a commit and mark the model as
having identified the commit as a readability improvement if the
score increases after the commit is made. We then calculate the
same metrics as we did for the proposed model on the predictions
of the readability models. We do this for our test set, as well as the
10 combinations of train and validation sets that were generated
during cross validation phase of training the proposed model.

Figures 5 and 6 show the evaluation metrics for the readability
models for the 10 fold cross-validation and the test set respectively.
Overall, we observe that state of the art readability models perform
better in the test set as compared to the cross validation, similar to
the proposed model. The Combined model obtains the best preci-
sion during cross validation at 44.05%, followed by Dorn’s model
and Scalabrino’s model at 42.6% and 41.34% respectively. For recall,
Dorn’s model performs the best at 40.25%, followed by Scalabrino’s
model at 40.00% and the Combined model at 36.71%. For the test
set, Scalabrino’s model attains the best precision at 64.51%, fol-
lowed by the Combined model at 62.22% and Dorn’s model at 60%.
Scalabrino’s model also performs best in terms of recall, at 47.14%
followed by Dorn’s model and the combined model at 41.14% and
37.71% respectively. The proposed model performs better than all
three state of the art models with a precision of 69.4% and recall of
59.3% for the cross validation and a precision of 79.2% and recall of
67% for the test set. We note that Mathew’s Correlation Coefficient
for all three state of the art models are close to 0 (low) for both the
cross validation and the test sets, whereas for the proposed model,
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Figure 2: Visualization of top feature impact on the proposed model

it is 0.41 (moderate) and 0.39 (fair) respectively. Mathew’s Correla-
tion Coefficient has been shown to be a more accurate assessment
of model performance in binary classification settings, especially
when classes are imbalanced [11]. This is the case for our test set,
where 60.6% of the examples are readability improvements.

We investigated some of the examples that were incorrectly
classified by the state of the art readability models.We observed that
for readability improvements where only comments were changed,
these models were not able to detect an improvement in readability.
This issue also affects the performance of the proposed model, but
it is able to somewhat mitigate the effects by the use of the various
lines of code metrics reported by RSM.

We find that several of the Checkstyle and PMD coding viola-
tions considered by our model play a significant role in correctly
classifying files that were incorrectly scored by the 3 readability
models. One such style violation is comment required, reported by
PMD, and is activated when comments are missing from specific
code elements. This violation has a strong negative correlation with
readability improvements, i.e. there are several examples where this
warning exists for the ‘before‘ version of a file but disappears in
the ‘after‘ version, indicating that the developer added a comment
to document a source code element. The proposed model is able
to detect this decrease in rule violation, whereas the readability
models are unable to detect this change. Another benefit of our
model’s usage of Checkstyle and PMD is that these are customizable
tools that professional developers use, and the information obtained

from them are highly relevant in terms of identifying developer
perceived improvements in readability.

Lastly, we note that these state of the art readability models are
not designed to be used in the context our proposed model tar-
gets: identifying incremental improvements in developer perceived
readability in practice. These tools were developed to assign an
overall readability score to a file, and perform well when discern-
ing differences in readability between two files with very different
readability.

RQ3 Summary: Our proposed model is able to significantly
outperform three state of the art readability models, Scalabrino,
Dorn, and the combined model, in the context of incremental
readability improvements. For the test set, we obtain a precision
of 79.2% and recall of 67%, which is significantly higher than the
compared models, the best of which achieves 64.51% precision
and 47.14% recall.

4 DISCUSSION
In this section we discuss the predictions made by the proposed
model and the state of the art readability models and the implica-
tions of this work.

Figure 3 shows an example of a readability improving change
that was misclassified by all 3 state of the art models, but was cor-
rectly classified by the proposed model. The author of this commit
explicitly state that the method invocation Condition.column is re-
placed by column to improve readability. The three state of the art
models we consider in this paper all assigned the same readability
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Figure 3: A commit that improves readability—misclassified
by state of the art readability models but correctly classified
by proposed model

score to the before and after versions of the snippet. The proposed
model predicts this change to be a readability improvement with
a probability of 75.8%. When we investigated the features that
contributing to this prediction, we found that the Coming feature
UPD_Type_Invocation and several lines of code metrics to be the
most significant contributors. UPD_Type_Invocation represents a
change in which the type of a method invocation has been changed,
as in the case of this commit. The proposed model combines this
information with the fact that the effective, logical and total lines
of code had insignificant changes, to make the correct prediction.

Figure 4: A readability improvement incorrectly identified
by the proposed model

Figure 4 shows an example of a readability improvement incor-
rectly classified as a non-readability change by the proposed model.
The change shown in the figure is the only change in the 184 lines
of code in the file. We noticed this to be a trend with the proposed
model; it has difficulty classifying changes which affect a very small
portion of the entire source code. We hypothesize that this is due to
our use of several file level metrics; small changes in the files result
in small changes in these metrics which the proposed model is not
able to effectively utilize to discern the type of change. Moreover,
the fine grained change information provided by Coming are not
able to aid the model in these cases. Lastly, the proposed model does
not consider refactorings; in the example presented in Figure 4, a
rename refactoring takes place. However, no metric used for the
proposed model is able to capture the nature of this change. This is
one area of improvement that will be addressed in future work.

Another opportunity for improvement of the proposed model is
the incorporation of metrics tools that perform dynamic analysis,
such as SonarQube. Warnings detected by SonarQube could be
potentially helpful as they align with qualitative observations of
readability improvements made by developers.

For example, removal of redundant strings, replacing commented
out source code, and removal of unused variables. We ran Sonar-
Qube on the expanded dataset and were only able to gather metrics
for 1000 data points, which would is would be too few for the
development of a machine learning model. SonarQube require com-
pilation and building of projects in order to successfully analyze
files, all of the failed instances are the result of non-passing builds
at a commit’s SHA. Future work could involve manual intervention
to fix failing builds in order to benefit from these dynamic analysis
metrics.

5 RELATEDWORK
5.1 Source Code Readability Models
Buse and Weimer [8] conduct a study investigating code readabil-
ity metrics and find that structural metrics such as the number
of branching and control statements, line length, the number of
assignments, and the number of spaces negatively affect readability.
They also show that metrics such as the number of blank lines,
the number of comments, and adherence to proper indentation
practices positively impact readability.

Posnett et al. [39] show that metrics such as McCabe’s Cyclo-
matic Complexity [32], nesting depth, the number of arguments,
Halstead’s complexity measures [21], and the overall number of
lines of code impact code readability. An empirical evaluation con-
ducted on the same dataset used by Buse and Weimer [8] indicates
that the model by Posnett et al. is more accurate than the one by
Buse and Weimer.

Scalabrino et al. [45] propose and evaluate a set of features based
entirely on source code lexicon analysis (e.g., consistency between
source code and comments, specificity of the identifiers, textual
coherence, comments readability). The model was evaluated on the
two datasets previously introduced by Buse and Weimer [8] and
Dorn [15] and on a new dataset, composed by 200 Java snippets,
manually evaluated by nine developers. The results indicate that
combining the features (i.e., structural and textual) improves the
accuracy of code readability models.

Borstler et al. [6] propose a simple readability measure for soft-
ware, SRES, which is based on metrics for word and sentence length.
SRES was shown to correlate well to textbook examples. Mi et al.
[34] propose the use of CNNs to improve the classification of source
code readability. They are able to improve upon existing models
by up to 17%. However, their model does not target readability
improvements made in practice.

5.2 Code Quality Metrics in Practice
Code quality metrics are at the core of many approaches supporting
software development and maintenance tasks. They have been
used to automatically detect code smells [24, 36], to recommend
refactorings [35, 40], and to predict the code fault- and change-
proneness [20, 29, 61]. Some of these applications assume that a
strong link between code quality as assessed by metrics and as
perceived by developers exists.

Scalabrino et al. [44] perform an extensive evaluation of 121
existing as well as new code-related [8, 15, 39, 46], documentation-
related ([46] and 2 newly introduced), and developer-related (3
newly introduced) metrics. They try to (i) correlate each metric
with understandability and (ii) build models combining metrics to
assess understandability. To do this, they use 444 human evaluations
from 63 developers and obtain a bold negative result: none of the
121 experimented metrics is able to capture code understandability,
not even the ones assumed to assess quality attributes apparently
related, such as code readability and complexity.

Indeed, code smell detectors and refactoring recommenders
should be able to identify design flaws/recommend refactorings
that align with developer’s perception in practice. While such an
assumption seems reasonable, there is limited empirical evidence
supporting it.
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Pantiuchina et al. [38] aim at bridging this gap by empirically in-
vestigating whether quality metrics are able to capture code quality
improvement as perceived by developers. While previous stud-
ies [4], [14], [41] surveyed developers to investigate whether met-
rics align with their perception of code quality, they mine commits
in which developers clearly state in the commit message their aim
of improving one of four quality attributes: cohesion, coupling,
code readability, and code complexity. They use state-of-the-art
metrics to measure the changes relative to the specific quality at-
tribute it targets. To measure code readability, the authors exploit
two state-of-the-art metrics.

The first one was presented by Buse and Weimer et al. [8] and
the second metric is the one proposed by Scalabrino et al. [46]. Code
readability is the quality attribute for which the authors observed
the less perceivable changes in the metrics’ values. This holds for
both metrics they employed, despite the metrics use totally different
features when assessing code readability. The two metrics report
only 28% [8] and 38% [46] of the modified classes as improving their
readability after the changes implemented in the commits.

In our initial work [16], we demonstrate that state-of-the-art
readability models are able to capture readability improvements
as explicitly tagged by developers in commits messages. We un-
derscore the need for a readability model that is able to capture
changes in incremental improvements.

In this study, we expand upon our preliminarywork by extending
the dataset and proposing a model that is able to identify readability
improvements in practice.

6 THREATS TO VALIDITY
This section discusses the threats to the validity of our study, as
they pertain to aspects of conclusion, internal, external, construct,
and reliability [56, 59].

Threats to conclusion validity concern the relation between the
treatment and the outcome. We report results using appropriate
diagnostics for the performance of the ML algorithms, such as
ROC and MCC and when discussing findings we keep into account
acceptable ranges for ROC and MCC (i.e., ROC ≥ 0.5 and MCC >
0).

Threats to internal validity concern external factors that could
affect the variables and the relations being investigated. The biggest
threat to internal validity is the experience of the developers who
wrote the code and commit messages used in our dataset. Although
we evaluated the commit messages manually, we can not be certain
that the developers have sufficient understanding about what makes
readable or unreadable source code, or that their perceptions of
readability are generalizable to the entire community of open source
developers. To mitigate this threat we control the quality of the
repositories used in our dataset by only using engineered projects.

Threats to construct validity concern the relation between theory
and observation. One of the major threats to construct validity in
this work pertains to the creation of the oracle. Misclassifying com-
mits in which developers state readability improvements is possible.
To mitigate this threat, two annotators, authors of this paper, went
through the set of readability and non-readability commits to en-
sure that developers’ changes can be classified as such. In case of a
doubt, the commit was excluded from the dataset. Another threat to

construct validity are the metrics considered in the paper. We select
a variety of static analysis tools to generate metrics on commit data
before and after changes are implemented. These metrics are then
fed as features into our model. The model depends on the accuracy
of these tools. Also, different tools could lead to different results.

Threats to external validity concern the generalizability of the
findings outside the experimental settings. Potential threats to ex-
ternal validity in this study include the selection of sampled open
source applications, which may not be representative of the studied
population. To mitigate this threat we only sampled engineered
open source Java projects from GitHub as identified by Reaper [37].
However, it is possible that a different dataset leads to different
conclusions.

Threats to reliability validity concern the ability to replicate
a study with the same data and to obtain the same results. We
use open-source software projects whose source code is available.
Moreover, we provide all the necessary details to replicate themodel
and analysis in our online replication package [42]

7 CONCLUSION
We presented a machine learning based model for detecting incre-
mental improvements in developer perceived source code readabil-
ity in practice. Our proposed model is able to correctly classify
readability commits with a precision of 79.2% and recall of 67%
in our test set consisting of data points from commits never seen
before by the model.

We then identified several source code metrics that are used by
our model to achieve its performance. Several of these metrics were
directly related to formatting changes, for which no direct metric
exists, but our model is able to leverage information about lines
of code and PMD and Checkstyle warnings to mitigate the lack of
this information. We then compared the performance of our model
to three state of the art readability models and showed that the
proposed model performs significantly better than these models at
identifying readability improvements.

The work we presented is a first step towards building a model
that can assign a readability score to indicate the change in read-
ability for each file in a commit. Such a model could then be used
throughout the software development life cycle as a measure for
software quality. It could be integrated in during into code review
tools to ease the review process for reviewers.
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