
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Model to Detect Readability Improvements in Incremental
Changes

Devjeet Roy
Washington State

University
Washington, USA

devjeet.roy@wsu.edu

Sarah Fakhoury
Washington State

University
Washington, USA

sarah.fakhoury@wsu.edu

John Lee
Washington State

University
Washington, USA
john.k.lee@wsu.edu

Venera Arnaoudova
Washington State

University
Washington, USA

venera.arnaoudova@wsu.edu

ABSTRACT
Identifying source code that has poor readability allows develop-
ers to focus maintenance efforts on problematic code. Therefore,
the effort to develop models that can quantify the readability of
a piece of source code has been an area of interest for software
engineering researchers for several years. However, recent research
questions the usefulness of these readability models in practice.
When applying these models to readability improvements that are
made in practice, i.e., commits, they are unable to capture these
incremental improvements, despite a clear perceived improvement
by the developers. This results in a discrepancy between the models
we have built to measure readability, and the actual perception of
readability in practice.

In this work, we propose a model that is able to detect incremen-
tal readability improvements made by developers in practice with
an average precision of 79.2% and an average recall of 67% on an
unseen test set . We then investigate the metrics that our model
associates with developer perceived readability improvements as
well as non-readability changes. Finally, we compare our model
to existing state-of-the-art readability models, which our model
outperforms by at least 23% in terms of precision and 42% in terms
of recall.

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Computing methodologies→ Machine learning.

KEYWORDS
Source code readability, Machine learning, Code quality.

ACM Reference Format:
Devjeet Roy, Sarah Fakhoury, John Lee, and Venera Arnaoudova. 2020.
A Model to Detect Readability Improvements in Incremental Changes. In
28th International Conference on Program Comprehension (ICPC ’20), October
5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3387904.3389255

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00
https://doi.org/10.1145/3387904.3389255

1 INTRODUCTION
In the past 40 years, researchers in the software engineering com-
munity have been studying various factors that effect program
comprehension, including the source code lexicon, comments, and
readability [5, 8, 9, 25, 26, 47, 49, 57]. Studies have shown that
roughly half of the cost of software maintenance stems from activi-
ties related to program comprehension [13], and developers spend
the majority of their time understanding source code [48, 50, 53, 58].

Thus, an important aspect of software that developers must be
mindful of during development, review, and maintenance activities
is source code readability. What is considered as ’readable’ source
code can vary based on individual, project, or even team preference.
Researchers have long since aimed to develop models that can
distinguish readable source code from non-readable source code
[6, 8, 15, 34, 39, 45], with the goal of creating tools to help developers
focus maintenance efforts. These models have been shown to have
good performance, with accuracy numbers as high as 85% [45],
when classifying a method or file as readable or non-readable.

However, recently, several models for the detection of source
code readability have come under question regarding the extent
of their usefulness in practice. Research by Pantiuchina et al. [38]
has shown that more often than not, in practice, state-of-the-art
code quality models are unable to capture quality improvements
in the source code. In other words, in the context of incremental
changes made to a pre-existing file, models are unable to capture
improvements in the source code’s cohesion, complexity, coupling,
and readability. Recently, we found that there exists a significant
discrepancy between the readability models created by researchers
and developers’ perception of readability improvements in practice,
as captured in commit messages [16]. When applying these models
to both versions of a file, before and after the change was made,
readability improvements can only be captured 40% of the time.

Possible reasons for the poor performance of these models in
practice could be attributed to the selection of external developers,
types of source code snippets, and classification of snippets on a
5-point Likert scale from ‘readable’ to ‘unreadable’. In fact, multi-
ple state-of-the-art models in software engineering have relied on
datasets derived by categorizing the readability of code snippets by
developers using such scale, in order to create an oracle from which
to derive metrics [8, 15, 45]. Thus, these models are not created to
detect the kind of readability improvements made in practice by
internal developers, which are often incremental in nature. Instead,
they are developed with the intent to rank readability on a universal
scale with two extremes.

1

https://doi.org/10.1145/3387904.3389255
https://doi.org/10.1145/3387904.3389255

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Devjeet Roy, Sarah Fakhoury, John Lee, and Venera Arnaoudova

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Results from our previous work [16] highlights a clear need for a
readability model that is able to successfully capture readability im-
provements in practice. We identify several promising metrics that
are able to successfully capture these improvements and should be
considered by future readability models. In this paper, we expand
upon our initial work by proposing a novel readability model that
successfully identifies readability improvements made by develop-
ers in practice, achieving a precision of 79.2% and a recall of 67%.
The proposed approach outperforms existing models by at least
23%.

The main contributions of this work are as follows:

(1) An expanded dataset previously made available by Fakhoury
et al. [16]. We increased the dataset by adding 886 new com-
mits from 13 additional Java projects.

(2) Manually validated a total of 2,781 new files for both read-
ability and non-readability improvement commits.

(3) Proposed a novel model for the detection of readability im-
provements made in practice.

(4) We provide a replication package, including the expanded
dataset and files needed to reproduce the results [42]

Paper Structure. The rest of the paper is organized as follows.
In Section 2, we present the study definition and design, including
discussion of the research questions, data collection procedures,
source code analysis tools, and the proposed approach. We answer
the research questions in Section 3 and discuss the implications of
our work in Section 4. We survey the related work in Section 5 and
discuss the threats to validity of our work in Section 6. We conclude
the paper in Section 7.

2 STUDY DEFINITION AND DESIGN
The goal of this study is to create a model that is able to capture
incremental readability improvements in Java source code. The
quality focus is the performance of the proposed model, as well as
the features that contribute to the model. The perspective of the
study is that of researchers and developers, who are interested in
measuring readability improvements during software maintenance
tasks. The evaluation is carried out on 2665 commits with readabil-
ity improvements from 76 engineered Java projects collected from
GitHub1.

Figure 1 depicts the overview of our approach. First, we expand
upon the initial oracle in our previous work [16] by collecting
commits from engineered open source Java projects on GitHub. To
construct the oracle—described in Section 2.2.2—we extract commits
that contain both readability and non-readability improvements, as
denoted by the authors of the commits in their commit messages.
This dataset is then manually validated by two annotators and
an oracle is created. We separate this oracle into a training and
testing set. Next, we use a set of static code analysis tools, such as
SourceMeter [27] and PMD [1], to collect metrics on files involved
in the commits.

For each readability and non-readability commit in the oracle,
metrics are collected on files before and after changes are made.
Descriptions of the tools and methods used can be found in Sec-
tion 2.3. Using these metrics as input to various machine learning

1https://github.com

algorithms, we perform automatic feature selection and hyper-
parameter tuning. We use the best performing configuration of
these two steps to devise our model; details about the approach are
provided in Section 2.4. The model is then evaluated on the test set
using a set of evaluation metrics and compared to state-of-the-art
readability models; details are provided in Section 2.5.

2.1 Research Questions
(1) RQ1: Can we use machine learning to capture readabil-

ity improvements made in practice?
Motivation: Recent research has shown that existing state-
of-the-art readability models are unable to capture readabil-
ity improvements made in practice when applied to incre-
mental software changes. Furthermore, there seems to exist
a discrepancy between existing models and developers’ per-
ception of readability. Creating a model that is able to detect
incremental improvements in source code readability is the
first step towards advancing tools that are designed to help
developers focus maintenance efforts.
Approach:We expand upon the intial dataset introduced in
our previous work [16] and use seven different static code
analysis tools to extract metrics for our model. We then use
a combination of automatic feature selection techniques to
create our feature set. We explore various machine learning
algorithms to create a model that can successfully identify
incremental readability improvements made in practice.

(2) RQ2:What features alignwith developers’ perception of
readability improvements in practice?
Motivation: By investigating the features our model relies
on for accurate detection of readability improvements, we
can gain a deeper understanding into which metrics are most
strongly aligned with developers’ perception of readability
in practice.
Approach: We perform a qualitative analysis on the set
of top features selected by our model. We explore which
of these features can help improve readability in practice
and compare them to the readability recommendations that
currently exist.

(3) RQ3: How does the proposed model perform when com-
pared to existing state-of-the-art readability models?
Motivation: By investigating how and why our model per-
forms against existing readability models, we can gain a
deeper understanding about how certain features contribute
to readability improvements in different development con-
texts.
Approach: We select three state-of-the-art readability mod-
els and run them on our oracle. We then compare their preci-
sion and recall with that of our proposed model and perform
qualitative analysis of our findings.

2.2 Data Collection
2.2.1 Subject Systems. Our dataset consists of 5104 data points
from 2665 commits in 76 projects. Each data point in the dataset
represents metrics collected for a file at a specific revision in its
git repository, and is labelled as either a readability improvement

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Model to Detect Readability Improvements in Incremental Changes ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Selected Tools for
Metric Collection

Source Meter

PMD

Coming

Refactoring Miner

RSM

Checkstyle

Change Distiller

Test Set

Additional
Engineered

Java Projects
from GitHub

Oracle by
Fakhoury et al.

Training Set

M
an

ua
l A

na
lys

is
Oracle

Non-Readability Commits

Readability Commits

ML Algorithms
Preprocessing

Feature Selection
Hyper-parameter tuning

Evaluation

Proposed Model

Figure 1: Overview of the approach.

Oracle # Projects # Commits # Files

Original [16]
Readability 63 548 2323
Non-Readability 1231* 2275*
Total 63 1779 4598

Expanded
Readability 76 653 2449
Non-Readability 2008 2661
Total 76 2661 5110

Table 1: Project, commit andfile statistics for theOracle used
in our initial work and the expanded version used in this pa-
per. *The expanded dataset contributes 2661 validated non-
readability files.

or not. Our dataset is a combination of the oracle we constructed
in [16] and data from new Java projects we identified on GitHub.
Table 1 outlines how our oracle compares to the original in terms
of the number of projects and the number of readability and non-
readability commits and files. We added 13 new projects and 882
commits. Given that non-readability data points from the original
dataset were not validated, the expanded dataset contributes 2,661
validated non-readability files. This is a total of 2,781 new data
points.

2.2.2 Oracle Creation. We follow a similar oracle construction
methodology as in [16] and expand upon our dataset by adding
new data points from engineered Java projects. An engineered
project is a software project that leverages sound principles of
software engineering across various aspects such as soure code,
documentation and testing [37]. In the original dataset, we only
validate commits belonging to readability improvements. Two an-
notators, the authors of this paper, manually validate all data points
in our oracle, including the commits that do not contain readability
improvements. If the annotators had a doubt and could not decide,

the data point was discarded. The number of discarded data points
were less than 5%. The procedure to create the oracle is outlined
below:

(1) Identify suitable Java projects using Reaper [37], a tool that
calculates a score for GitHub repositories to determinewhether
they are engineered projects or not.

(2) Identify candidate readability improvement commits in a
project by using a keyword match on the commit message us-
ing keywords: ‘readable’, ‘readability’, ‘easier to read’, ‘com-
prehension’, ‘comprehensible’, ‘understand’, ‘understanding’,
and ‘clean up’. We manually validate and exclude commits
that contain the keywords but do not explicitly reflect read-
ability improvements of the source code. For example, com-
mit messages stating the improvement of the readability of
UI elements for user-facing applications.

(3) Commits containing readability improvements might also
contain other types of changes, such as bug fixes. To en-
sure that only files that contain readability improvements
are included in the oracle, we manually untangle commits
by excluding the files that contain changes not related to
readability.

(4) Randomly sample data points that do not contain readability
improvements from the remaining commits for each project.
We manually validate each commit, to make sure commits
do not contain readability improvements. For example, an
ambiguous commit that contains added functionality but
also replaces pre-existing magic numbers with a constant.

2.3 Source Code Analysis Tools
In order to create a model that can distinguish between readability
and non-readability changes, we must identify features that can
capture the differences in both categories. We use seven different
source code analysis tools that collect a wide variety of source code

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Devjeet Roy, Sarah Fakhoury, John Lee, and Venera Arnaoudova

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

metrics at a file level. By running these tools on versions of the
source code before and after a readability or non-readability change
was made, we can capture the differences in metrics caused by the
change. These differences then become the defining features for
our model. We use all five of the tools originally explored in [16],
and add two new tools: RSM and Coming. We describe the tools
and the types of metrics they collect in the following paragraphs.

2.3.1 SourceMeter. SourceMeter [27] is a static analysis tool that
computes a large variety of source code quality metrics. These
metrics are grouped into 6 categories: cohesion, complexity, cou-
pling, documentation, inheritance, and size. Complexity metrics,
for example, include Halstead Effort (HE), McCabe’s Cyclomatic
Complexity (McCC), and Weighted Methods per Class (WMC).

2.3.2 Checkstyle. Checkstyle [7] is a static analysis tool which
checks source code adherence to configurable rules.We use the stan-
dalone version of Checkstyle, along with two of the configuration
files provided by Checkstyle, sunchecks.xml and googlechecks.xml,
modified to add a warning for magic numbers. For each file in a
commit, we run the tool on the version of the file before and af-
ter the change. We then compute the difference in the number of
warnings between the before and after versions of a file.

2.3.3 RSM. Resource Standard Metrics (RSM) [2] is a fast and light-
weight command line tool for gathering source code metrics. RSM
can calculate several metrics pertaining to file diff information, such
as new comment lines, removed logical lines of code and added
non-logical lines of code. We use RSM metrics to capture impor-
tant changes that are often made by developers during readability
improvements, for example adding and updating documentation or
formatting changes.

2.3.4 Coming. Coming [30] is a tool that mines code change pat-
terns on git commits. Coming computes fine-grained code changes
between two consecutive revisions, and can be used to analyze
those changes to determine if they correspond to an instance of a
change pattern. In this study, Coming is used for its ability to detect
fine grained changed made in files at each commit in our dataset.

2.3.5 PMD. PMD [1] is a cross-language static source code ana-
lyzer. It detects common poor programming practices and issues
related to coding style, design, documentation, and performance.
We use the warnings generated by PMD on a file before and af-
ter a commit to help identify differences between readability and
non-readability improvements.

2.3.6 ChangeDistiller. ChangeDistiller [17] as a tool that extracts
and categorizes statement level changes in Java source code. ChangeDis-
tiller uses the abstract syntax tree (AST) of the source code to ex-
tract fine grained changes using the change distiller algorithm [18].
Statement level source code changes are classified according to 41
different change types. For each file, we compute the total number
of changes belonging to each of the 41 types.

2.3.7 RefactoringMiner. RefactoringMiner detects refactorings across
the history of Java projects, using the RMiner technique as pro-
posed by Tsantalis et al. [51]. It supports 21 refactoring types, such
as Extract Method, Move Method, Replace Variable with Method,

and Parameterize Variable. RefactoringMiner has 98% precision and
87% recall.

2.4 Approach
2.4.1 Model Building Process. Before we begin the model building
process, we randomly extracted 10% of the data into a holdout
or test set. Only the training set was used for the entire model
building process, including all aspects of feature selection, model
selection and hyperparameter optimization. The train/test split was
conducted so that data from the same project could only exist in
one of the two sets. This was done to prevent information leakage
from the test to the train set, enabling test set performance to serve
as an estimator of model’s ability to generalize.

Model creation was performed incrementally using the training
set, employing 10-fold nested cross validation [52]. During the cross
validation phase, each combination of imputation technique, feature
selection technique and model selection was performed for each
fold. Once the model was built and trained on the training set, it was
evaluated using performance metrics described below. The focus
here was to identify and use the best, i.e., unbiased, model building
process rather than building the best model. This model building
process consists of several steps: feature scaling, imputation of
missing values, feature pruning, feature selection, model selection,
and hyperparameter optimization algorithm selection. Performing
this process for each fold is critical in reducing selection bias as can
happen when these steps are performed on the entire training and
validation sets [3]. Once the best model building procedure was
identified, we used the same methodology on the entire training
set to build the model, and then evaluated its generalization ability
on the test set that was set aside at the beginning of the process.

2.4.2 Initial Feature Pruning. We performed an exploratory inves-
tigation of the features in our data to prune irrelevant features, such
as line and column numbers. We also analyzed the number of miss-
ing datapoints that had missing data for every given feature. We
found that that both ChangeDistiller and RefactoringMiner were
missing for more than 60% of the columns, and they were thereby
excluded. However, the removal of these two tools represented a
significant loss of information for our model to learn from; namely
the nature of changes and refactorings made. Hence, we looked for
tools to replace them. In order to replace change information pro-
vided by ChangeDistiller, we use Coming, which provides change
information at a finer granularity than ChangeDistiller. However,
we were not able to find a suitable replacement for Refactoring-
Miner, and as a result, our model does not take into account any
refactoring changes.

2.4.3 Missing Value Imputation. Our data has several features
which contain a significant amount of missing values (up to 863
out of 5100), due to tool failure. Therefore, missing value imputa-
tion was a major consideration in the model design process. We
used four different types of single imputation for the purposes of
building this model. In single imputation, missing values are filled
using an estimate of what the value should be based. This can be
done by simple using a summary statistic such as the mean of the
non-missing values or using regression to predict the missing value
based on other features. We tried using mean, median, and constant

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A Model to Detect Readability Improvements in Incremental Changes ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

value imputation, as well as imputation by chained equations [55].
For constant value imputation, we simply replaced all missing val-
ues with zeros. In addition, when evaluating tree based models, we
also provided the models with the data without any imputation due
to their inherent robustness to and handling of missing values.

2.4.4 Automatic Feature Selection. Due to the large number of
features from the static analysis tools, we performed automatic
feature selection before providing training examples to all the mod-
els we evaluated. We perform this in two passes. In the first pass,
we remove features with 0 variance. This is done before the cross-
validation phase, to remove features that are clearly redundant.
Next, during the cross validation, we apply a random forest based
feature elimination algorithm known as the Boruta algorithm [43].
The Boruta algorithm is a wrapper method that uses random forests
to perform feature selection. It offers several benefits over Recur-
sive Feature Elimination (RFE) [19], a widely used feature selection
technique. Unlike RFE, which strives to create the minimum subset
of relevant features, Boruta captures all-relevant features; features
that could potentially be pruned by RFE due to their low importance
are selected by Boruta if they are relevant to making a prediction
in a relatively number of instances. Although this might result in a
slightly larger set of features than RFE, it also holds the potential to
improve model performance, as we found to be the case during our
evaluation. Secondly, it does not always remove correlated features,
which is beneficial for model performance in some scenarios. For
example, difference in the number of logical lines of code and lines
of code changed by a commit might be highly correlated, but the
presence of both features is important in the context of classifying
readability improving commits; removing one removes important
information regarding the number of formatting changes that did
not affect the functionality of the source code.

2.4.5 Model Selection. We started the model selection process by
evaluating several classical algorithms, including Logistic Regres-
sion, Support Vector Machines, Naive Bayes, k-Nearest Neighbors
and Decision Trees. Linear models performed very poorly on our
dataset, which is to be expected considering the high degree of mul-
ticollinearity of the features. For example, RSM reports effective,
logical and total lines of code, which are highly correlated. Simi-
larly, Naive Bayes does not perform any better due to its assump-
tion of conditional independence. k-Nearest Neighbors performed
marginally better. The models that did perform well were tree based
methods, including ensemble methods. Tree based methods have
been used specially in the domain of fault prediction [22, 33, 54, 60].
The main benefits they offer in ours case is that they are not highly
affected by multi-collinearity, they are robust to noise, perform
implicit feature selection, and are easier to interpret than other
models listed above. We evaluated 5 tree based methods, including
Random Forests, Gradient Boosted Trees, AdaBoost, XGBoost [10]
and LightGBM [23]. Out of these, we selected XGBoost based on
the quality and consistency of its performance.

2.4.6 Parameter Optimization. The parameter optimization proce-
dure we use is 10 fold cross validated grid search. For XGBoost, we
optimize the following hyperparameters: maximum depth, number
of estimators and minimum weight for a new child node.

2.5 Evaluation
We evaluate our models using the following metrics:

2.5.1 Precision. Precision is defined as the ratio of number of true
positives (TP) to the sum of the TP and the false positives (FP). Pre-
cision can vary from 0 to 1, the latter indicating a perfect precision.

2.5.2 Recall. Recall is calculated as the ratio of the number of true
positives to the sum of the true positives and the false negatives
(FN). The higher the recall the better, with 1 indicating a perfect
recall.

2.5.3 F-measure. F-measure or F1 score is the harmonic mean of
precision and recall. As precision and recall are inversely related,
F1 score allows to combine both metrics in one score.

F1 = 2 ·
Precision · Recall

Precision + Recall

2.5.4 Area Under Curve (AUC)-Receiving Operator Characteristic
(ROC). ROC is a plot of the TP rate against the FP rate at various
discrimination thresholds. The area under ROC is close to 1 when
the classifier performs better and close to 0.5 when the classification
model is poor and behaves like a random classifier.

2.5.5 Matthews Correlation Coefficient (MCC). MCC is a measure
used in machine learning to assess the quality of a binary classifier
especially when the classes are unbalanced [31].

MCC =
TP ·TN − FP · FN√

(TP + FP)(FN +TN)(FP +TN)(TP + FN)

Values range from -1 to 1. Zeromeans that the approach performs
like a random classifier. Other correlation values are interpreted
as follows: MCC < 0.2: low, 0.2 ≤ MCC < 0.4: fair, 0.4 ≤ MCC <
0.6: moderate, 0.6 ≤ MCC < 0.8: strong, and MCC ≥ 0.8: very
strong [12].

2.5.6 Comparison to state-of-the-art models. Building on our work
in [16], we compare our model to three state-of-the-art readability
models which assess different aspects of the source code. The first
model we used is proposed by Scalabrino et al. [45] and uses metrics
that measure the quality of the source code lexicon as a proxy of
readability. The second model we consider is proposed by Dorn et
al. as a generalizable model for source code readability [15]. This
model relies on features like visual, spatial, alignment, and linguistic
aspects of the source code. We use the implementation provided by
Scalabrino et al. in their paper comparing state-of-the-art readability
models [45]. The last model we consider is also implemented by
Scalabrino et al. [45], but is a combination of multiple state-of-the-
art readability models. We refer to this model as the Combined
model. It combines the first two models as well as Buse & Weimer’s
model [8] and Posnett’s model [39]. This model is shown to have the
highest accuracy scores when evaluated against all the individual
models on the same dataset.

The model we propose in this paper classifies the changes intro-
duced at a file in a commit as either a readability improvement or
not. However, the state-of-the-art models we consider measure the
readability of a file on a scale. To make valid comparisons with our
model, we measure the readability scores of these models on the
before and after snapshots of a file for a given commit, and mark an

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Devjeet Roy, Sarah Fakhoury, John Lee, and Venera Arnaoudova

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Metric CV(%) Test(%)

Precision 69.4 79.2
Recall 59.3 67
MCC 0.41 0.39
F-1 63.9 72.6
ROC-AUC 70 70

Table 2: Precision, Recall and F-1 score of proposed model
for 10 fold cross validation (CV) and the test set.

Metric Non-Readability Readability

Precision 72.8 69.4
Recall 80.6 59.3
F1 76.5 63.9

Table 3: Precision, Recall and F-1 score of proposed model
for 10 fold cross validation.

P. Non-Readability P. Readability Total

Non-Readability 141 52 193
Readability 98 199 297

Total 239 251 490
Table 4: Confusion matrix for the proposed model.

increase in the score as a readability improvement. Scores that stay
the same or decrease are not considered readability improvements.
This allows us to compare these models to our approach.

2.5.7 Shapley Additive Explanations (SHAP). In order to investigate
the impact of different source code metrics on the model’s predic-
tions, we employ the use of SHapley Additive exPlanations [28], a
unified framework used to identify the role of individual features
in a model’s predictions using a game theoretic approach. For a
given input, SHAP is able to identify whether a given feature raises
or decreases the model’s output, and the weight of the feature for
making that decision. For tree based models, SHAP offers an ex-
act algorithm to determine the contribution of each feature in a
decision made by the model. We utilize it to identify features that
are aligned with developer’s perceptions of incremental readability
improvements.

3 RESULTS
3.1 RQ1: Can we use machine learning to capture

readability improvements made in practice?
Table 2 reports the performance of the proposed model for the 10
fold cross validation and the hold out test set. The model achieves
an average precision and recall of 69.4% and 59.3% respectively. This
results in an average F-1 score of 63.9% and MCC of 0.41 (moderate).
On the test set, the model achieves better performance, at 79.2%
precision, 67% recall, 0.39 MCC (fair), 72.6% F-1 and 70% AUC-ROC.
The model performs better on the test set, which could be due to

several factors. For example, the model training on a larger dataset,
as well as the nature of the projects that were randomly selected
for the test set.

Table 4 shows the confusion matrix of our model’s predictions
for the test set. 297 (60.1%) out of the 490 examples in our test set
were readability improvements. Out of these, our model was able to
classify 199 correctly, while classifying the remaining 98 examples
incorrectly. Hence, our model is able to identify readability commits
with a reasonable degree of recall (67%). However, it is conservative
in its approach, falsely classifying 98 examples.

We manually investigated a sample of training examples to iden-
tify the nature of the mistakes made by the model. We observed
that for some files, the readability commit affected only a single line.
Since many of the tools we use to collect metrics measure at a file
level, this would result in most of the these metrics remaining the
same before and after the readability commit, and as a result, most
of the features of our model would be zero. We only expected to
find metrics reported from coming and RSM for these cases. Com-
ing detects changes at sub-statement granularity, whereas RSM
measures changes not just in lines of code, but also effective lines
of code, comment lines of code and logical lines of code.

This was especially the case for certain examples where only
formatting changes were made to a very small number of lines
of code (less than 5). A similar issue lies in changes that affect
only comments, as most tools do not collect exhaustive metrics for
source code comments; the only metrics that picked up changes in
comments were reported by RSM. Coming supports detection of
changes in comments according to its documentation, but it didn’t
detect any for our dataset despite their presence.

Another observation we made during our manual investigation
was that often, non-readability changes introduce changes in a
source code that result in features changing in a manner similar to
that for readability changes. For example, in one case, we observed
that a method was introduced into a class to add functionality. In
order to add this method, source code from another method had to
be refactored in a way that improves readability. As a result, the sig-
nal for both the features associated with readability improvements
and non-readability changes were strong.
RQ1 Summary: Our readability model is able to identify devel-
oper perceived readability improvements in source code with
79.2% precision and 67% recall on the test set.

3.2 RQ2: What features align with developers’
perception of readability improvements in
practice?

A visualization of the SHAP values for our top features is shown in
Figure 2. In the figure, for each feature, the SHAP values are plotted
on the x-axis, while feature values are represented on the y axis, as
a scatterplot. Features on the y-axis are sorted in descending order
of their overall importance to the model. Each point is shaded based
on the gradient shown; when feature values are high, their color
is closer to red, whereas when feature values are low, their color
is closer to blue. The SHAP values shown on the x-axis indicate
both the magnitude and the direction of the impact of a given
point. Combining these two pieces of information provides us a
good picture of the impact of a feature on the model’s predictions.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A Model to Detect Readability Improvements in Incremental Changes ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

For example, for the feature UPD_Class_Package, if we consider
the rightmost point that is colored red, it means that a high value
of UPD_Class_Package results in a large positive impact on the
model’s output.

We observe from Figure 2 that when the number of effective
lines of code that change (Dif_Av.eLOC% and Dif_eLOC), change
in comment density (CD) and change in comment lines of code
(Dif_Comment) are high, the model tends to classify the change
as a readability improvement. This falls in line with our intuition;
in readability changes, developers tend to modify existing lines of
code rather than introducing new lines of code, introduce new com-
ments (thereby increasing comment density) and update existing
comments. On the other hand, we observe that high values of the
number of effective lines, logical lines and comment lines of code
that remain unchanged (Equ_eLOC, Equ_lLOC and Equ_Comment)
drive the model towards classifying a change as a non-readability
change. In addition, an increase in the total lines of code (TLOC)
is associated with non-readability change prediction by the pro-
posed model. This indicates that changes in which existing lines
of code are not changed, but instead either new lines are added or
existing lines are completely removed tend to be identified by the
proposed model as non-readability changes. We investigated some
of these non-readability changes to find that this was indeed the
case, especially for changes that introduced new functionality.

We note that the several lines of code metrics discussed above are
highly correlated, yet highly important to the model. Although their
inclusion would give the impression of redundancy, we hypothesize
that they help the model detect large formatting changes in the
source code. For example, for a change that only consists of a
large number of formatting changes, the number of logical lines
of code remains the same, but the total number of lines of code
is likely to change. The model, however, is unaware of the nature
of the formatting change, i.e. whether the change had a positive
or negative impact on readability. We manually inspected several
examples in our dataset to find this to be the case, however, further
investigation on a larger data set is needed to establish conclusively
whether this holds true in general.

Several software complexity metrics, such as Halstead Effort
(HEFF), Halstead Program Length (HPL), McCabe’s Cyclomatic
Complexity (McCC) and Halstead’s Number of Delivered Bugs
(HNDB), drive the model to classify a change as a non-readability
change. Although readability and complexity are separate dimen-
sions of software quality, we observe that for our dataset, developer
perceived readability and several complexity metrics are correlated.
This aligns with the observation we made earlier regarding how
lines of code metrics change for non-readability changes; they tend
to introduce new lines of code that can potentially have a negative
impact on source code complexity.

RQ2 Summary: Developer perceived readability improvements
are characterized by greater changes to existing lines of code,
while non-readability changes tend to add new lines of code
and leave existing lines untouched. Non-readability changes are
also associated with increased values of several software quality
metrics such as Halstead Effort, Halstead Number of Delivered
Bugs and McCabe’s Cyclomatic Complexity.

Dorn Scalabrino Combined

Precision 42.6 41.34 44.05
Recall 40.25 40.00 36.71
F-1 39.70 38.89 38.19
MCC 0.00 -0.01 0.03
ROC-AUC 50.55 49.58 51.85

Table 5: Mean 10 fold cross validationmetrics for three state
of the art readability models.

Dorn Scalabrino Combined

Precision 60.00 64.51 62.22
Recall 41.14 47.14 37.71
F-1 49.00 54.47 46.96
MCC -0.01 0.07 0.02
ROC-AUC 49.46 53.62 51.24

Table 6: Test set metrics for three state of the art readability
models.

3.3 RQ3: How does the proposed model perform
when compared to existing state-of-the-art
readability models?

In order to answer this research question, we use three state of the
art readability models: Dorn’s model, Scalabrino’s model and the
combined model, and compare their performance on our test set to
the proposed model. For each model, we calculate the readability
scores for a file before and after a commit and mark the model as
having identified the commit as a readability improvement if the
score increases after the commit is made. We then calculate the
same metrics as we did for the proposed model on the predictions
of the readability models. We do this for our test set, as well as the
10 combinations of train and validation sets that were generated
during cross validation phase of training the proposed model.

Figures 5 and 6 show the evaluation metrics for the readability
models for the 10 fold cross-validation and the test set respectively.
Overall, we observe that state of the art readability models perform
better in the test set as compared to the cross validation, similar to
the proposed model. The Combined model obtains the best preci-
sion during cross validation at 44.05%, followed by Dorn’s model
and Scalabrino’s model at 42.6% and 41.34% respectively. For recall,
Dorn’s model performs the best at 40.25%, followed by Scalabrino’s
model at 40.00% and the Combined model at 36.71%. For the test
set, Scalabrino’s model attains the best precision at 64.51%, fol-
lowed by the Combined model at 62.22% and Dorn’s model at 60%.
Scalabrino’s model also performs best in terms of recall, at 47.14%
followed by Dorn’s model and the combined model at 41.14% and
37.71% respectively. The proposed model performs better than all
three state of the art models with a precision of 69.4% and recall of
59.3% for the cross validation and a precision of 79.2% and recall of
67% for the test set. We note that Mathew’s Correlation Coefficient
for all three state of the art models are close to 0 (low) for both the
cross validation and the test sets, whereas for the proposed model,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Devjeet Roy, Sarah Fakhoury, John Lee, and Venera Arnaoudova

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 2: Visualization of top feature impact on the proposed model

it is 0.41 (moderate) and 0.39 (fair) respectively. Mathew’s Correla-
tion Coefficient has been shown to be a more accurate assessment
of model performance in binary classification settings, especially
when classes are imbalanced [11]. This is the case for our test set,
where 60.6% of the examples are readability improvements.

We investigated some of the examples that were incorrectly
classified by the state of the art readability models.We observed that
for readability improvements where only comments were changed,
these models were not able to detect an improvement in readability.
This issue also affects the performance of the proposed model, but
it is able to somewhat mitigate the effects by the use of the various
lines of code metrics reported by RSM.

We find that several of the Checkstyle and PMD coding viola-
tions considered by our model play a significant role in correctly
classifying files that were incorrectly scored by the 3 readability
models. One such style violation is comment required, reported by
PMD, and is activated when comments are missing from specific
code elements. This violation has a strong negative correlation with
readability improvements, i.e. there are several examples where this
warning exists for the ‘before‘ version of a file but disappears in
the ‘after‘ version, indicating that the developer added a comment
to document a source code element. The proposed model is able
to detect this decrease in rule violation, whereas the readability
models are unable to detect this change. Another benefit of our
model’s usage of Checkstyle and PMD is that these are customizable
tools that professional developers use, and the information obtained

from them are highly relevant in terms of identifying developer
perceived improvements in readability.

Lastly, we note that these state of the art readability models are
not designed to be used in the context our proposed model tar-
gets: identifying incremental improvements in developer perceived
readability in practice. These tools were developed to assign an
overall readability score to a file, and perform well when discern-
ing differences in readability between two files with very different
readability.

RQ3 Summary: Our proposed model is able to significantly
outperform three state of the art readability models, Scalabrino,
Dorn, and the combined model, in the context of incremental
readability improvements. For the test set, we obtain a precision
of 79.2% and recall of 67%, which is significantly higher than the
compared models, the best of which achieves 64.51% precision
and 47.14% recall.

4 DISCUSSION
In this section we discuss the predictions made by the proposed
model and the state of the art readability models and the implica-
tions of this work.

Figure 3 shows an example of a readability improving change
that was misclassified by all 3 state of the art models, but was cor-
rectly classified by the proposed model. The author of this commit
explicitly state that the method invocation Condition.column is re-
placed by column to improve readability. The three state of the art
models we consider in this paper all assigned the same readability

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

A Model to Detect Readability Improvements in Incremental Changes ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 3: A commit that improves readability—misclassified
by state of the art readability models but correctly classified
by proposed model

score to the before and after versions of the snippet. The proposed
model predicts this change to be a readability improvement with
a probability of 75.8%. When we investigated the features that
contributing to this prediction, we found that the Coming feature
UPD_Type_Invocation and several lines of code metrics to be the
most significant contributors. UPD_Type_Invocation represents a
change in which the type of a method invocation has been changed,
as in the case of this commit. The proposed model combines this
information with the fact that the effective, logical and total lines
of code had insignificant changes, to make the correct prediction.

Figure 4: A readability improvement incorrectly identified
by the proposed model

Figure 4 shows an example of a readability improvement incor-
rectly classified as a non-readability change by the proposed model.
The change shown in the figure is the only change in the 184 lines
of code in the file. We noticed this to be a trend with the proposed
model; it has difficulty classifying changes which affect a very small
portion of the entire source code. We hypothesize that this is due to
our use of several file level metrics; small changes in the files result
in small changes in these metrics which the proposed model is not
able to effectively utilize to discern the type of change. Moreover,
the fine grained change information provided by Coming are not
able to aid the model in these cases. Lastly, the proposed model does
not consider refactorings; in the example presented in Figure 4, a
rename refactoring takes place. However, no metric used for the
proposed model is able to capture the nature of this change. This is
one area of improvement that will be addressed in future work.

Another opportunity for improvement of the proposed model is
the incorporation of metrics tools that perform dynamic analysis,
such as SonarQube. Warnings detected by SonarQube could be
potentially helpful as they align with qualitative observations of
readability improvements made by developers.

For example, removal of redundant strings, replacing commented
out source code, and removal of unused variables. We ran Sonar-
Qube on the expanded dataset and were only able to gather metrics
for 1000 data points, which would is would be too few for the
development of a machine learning model. SonarQube require com-
pilation and building of projects in order to successfully analyze
files, all of the failed instances are the result of non-passing builds
at a commit’s SHA. Future work could involve manual intervention
to fix failing builds in order to benefit from these dynamic analysis
metrics.

5 RELATEDWORK
5.1 Source Code Readability Models
Buse and Weimer [8] conduct a study investigating code readabil-
ity metrics and find that structural metrics such as the number
of branching and control statements, line length, the number of
assignments, and the number of spaces negatively affect readability.
They also show that metrics such as the number of blank lines,
the number of comments, and adherence to proper indentation
practices positively impact readability.

Posnett et al. [39] show that metrics such as McCabe’s Cyclo-
matic Complexity [32], nesting depth, the number of arguments,
Halstead’s complexity measures [21], and the overall number of
lines of code impact code readability. An empirical evaluation con-
ducted on the same dataset used by Buse and Weimer [8] indicates
that the model by Posnett et al. is more accurate than the one by
Buse and Weimer.

Scalabrino et al. [45] propose and evaluate a set of features based
entirely on source code lexicon analysis (e.g., consistency between
source code and comments, specificity of the identifiers, textual
coherence, comments readability). The model was evaluated on the
two datasets previously introduced by Buse and Weimer [8] and
Dorn [15] and on a new dataset, composed by 200 Java snippets,
manually evaluated by nine developers. The results indicate that
combining the features (i.e., structural and textual) improves the
accuracy of code readability models.

Borstler et al. [6] propose a simple readability measure for soft-
ware, SRES, which is based on metrics for word and sentence length.
SRES was shown to correlate well to textbook examples. Mi et al.
[34] propose the use of CNNs to improve the classification of source
code readability. They are able to improve upon existing models
by up to 17%. However, their model does not target readability
improvements made in practice.

5.2 Code Quality Metrics in Practice
Code quality metrics are at the core of many approaches supporting
software development and maintenance tasks. They have been
used to automatically detect code smells [24, 36], to recommend
refactorings [35, 40], and to predict the code fault- and change-
proneness [20, 29, 61]. Some of these applications assume that a
strong link between code quality as assessed by metrics and as
perceived by developers exists.

Scalabrino et al. [44] perform an extensive evaluation of 121
existing as well as new code-related [8, 15, 39, 46], documentation-
related ([46] and 2 newly introduced), and developer-related (3
newly introduced) metrics. They try to (i) correlate each metric
with understandability and (ii) build models combining metrics to
assess understandability. To do this, they use 444 human evaluations
from 63 developers and obtain a bold negative result: none of the
121 experimented metrics is able to capture code understandability,
not even the ones assumed to assess quality attributes apparently
related, such as code readability and complexity.

Indeed, code smell detectors and refactoring recommenders
should be able to identify design flaws/recommend refactorings
that align with developer’s perception in practice. While such an
assumption seems reasonable, there is limited empirical evidence
supporting it.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Devjeet Roy, Sarah Fakhoury, John Lee, and Venera Arnaoudova

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Pantiuchina et al. [38] aim at bridging this gap by empirically in-
vestigating whether quality metrics are able to capture code quality
improvement as perceived by developers. While previous stud-
ies [4], [14], [41] surveyed developers to investigate whether met-
rics align with their perception of code quality, they mine commits
in which developers clearly state in the commit message their aim
of improving one of four quality attributes: cohesion, coupling,
code readability, and code complexity. They use state-of-the-art
metrics to measure the changes relative to the specific quality at-
tribute it targets. To measure code readability, the authors exploit
two state-of-the-art metrics.

The first one was presented by Buse and Weimer et al. [8] and
the second metric is the one proposed by Scalabrino et al. [46]. Code
readability is the quality attribute for which the authors observed
the less perceivable changes in the metrics’ values. This holds for
both metrics they employed, despite the metrics use totally different
features when assessing code readability. The two metrics report
only 28% [8] and 38% [46] of the modified classes as improving their
readability after the changes implemented in the commits.

In our initial work [16], we demonstrate that state-of-the-art
readability models are able to capture readability improvements
as explicitly tagged by developers in commits messages. We un-
derscore the need for a readability model that is able to capture
changes in incremental improvements.

In this study, we expand upon our preliminarywork by extending
the dataset and proposing a model that is able to identify readability
improvements in practice.

6 THREATS TO VALIDITY
This section discusses the threats to the validity of our study, as
they pertain to aspects of conclusion, internal, external, construct,
and reliability [56, 59].

Threats to conclusion validity concern the relation between the
treatment and the outcome. We report results using appropriate
diagnostics for the performance of the ML algorithms, such as
ROC and MCC and when discussing findings we keep into account
acceptable ranges for ROC and MCC (i.e., ROC ≥ 0.5 and MCC >
0).

Threats to internal validity concern external factors that could
affect the variables and the relations being investigated. The biggest
threat to internal validity is the experience of the developers who
wrote the code and commit messages used in our dataset. Although
we evaluated the commit messages manually, we can not be certain
that the developers have sufficient understanding about what makes
readable or unreadable source code, or that their perceptions of
readability are generalizable to the entire community of open source
developers. To mitigate this threat we control the quality of the
repositories used in our dataset by only using engineered projects.

Threats to construct validity concern the relation between theory
and observation. One of the major threats to construct validity in
this work pertains to the creation of the oracle. Misclassifying com-
mits in which developers state readability improvements is possible.
To mitigate this threat, two annotators, authors of this paper, went
through the set of readability and non-readability commits to en-
sure that developers’ changes can be classified as such. In case of a
doubt, the commit was excluded from the dataset. Another threat to

construct validity are the metrics considered in the paper. We select
a variety of static analysis tools to generate metrics on commit data
before and after changes are implemented. These metrics are then
fed as features into our model. The model depends on the accuracy
of these tools. Also, different tools could lead to different results.

Threats to external validity concern the generalizability of the
findings outside the experimental settings. Potential threats to ex-
ternal validity in this study include the selection of sampled open
source applications, which may not be representative of the studied
population. To mitigate this threat we only sampled engineered
open source Java projects from GitHub as identified by Reaper [37].
However, it is possible that a different dataset leads to different
conclusions.

Threats to reliability validity concern the ability to replicate
a study with the same data and to obtain the same results. We
use open-source software projects whose source code is available.
Moreover, we provide all the necessary details to replicate themodel
and analysis in our online replication package [42]

7 CONCLUSION
We presented a machine learning based model for detecting incre-
mental improvements in developer perceived source code readabil-
ity in practice. Our proposed model is able to correctly classify
readability commits with a precision of 79.2% and recall of 67%
in our test set consisting of data points from commits never seen
before by the model.

We then identified several source code metrics that are used by
our model to achieve its performance. Several of these metrics were
directly related to formatting changes, for which no direct metric
exists, but our model is able to leverage information about lines
of code and PMD and Checkstyle warnings to mitigate the lack of
this information. We then compared the performance of our model
to three state of the art readability models and showed that the
proposed model performs significantly better than these models at
identifying readability improvements.

The work we presented is a first step towards building a model
that can assign a readability score to indicate the change in read-
ability for each file in a commit. Such a model could then be used
throughout the software development life cycle as a measure for
software quality. It could be integrated in during into code review
tools to ease the review process for reviewers.

REFERENCES
[1] [n. d.]. PMD. https://pmd.github.io/latest/index.html, last accessed on January

2020.
[2] [n. d.]. Resource Standard Metrics (RSM). https://msquaredtechnologies.com/

Resource-Standard-Metrics.html, last accessed on January 2020.
[3] Christophe Ambroise and Geoffrey J McLachlan. 2002. Selection bias in gene

extraction on the basis of microarray gene-expression data. Proceedings of the
national academy of sciences 99, 10 (2002), 6562–6566.

[4] Gabriele Bavota, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys Poshy-
vanyk, and Andrea De Lucia. 2013. An empirical study on the developers’ per-
ception of software coupling. In Proceedings of the International Conference on
Software Engineering (ICSE). 692–701.

[5] David Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. 2009. To
CamelCase or Under_score. In Proceedings of the International Conference on
Program Comprehension (ICPC). 158–167.

[6] Jürgen Börstler, Michael E Caspersen, and Marie Nordström. 2016. Beauty and
the Beast: on the readability of object-oriented example programs. Software
quality journal 24, 2 (2016), 231–246.

10

https://pmd.github.io/latest/index.html
https://msquaredtechnologies.com/Resource-Standard-Metrics.html
https://msquaredtechnologies.com/Resource-Standard-Metrics.html

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

A Model to Detect Readability Improvements in Incremental Changes ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[7] Oliver Burn. 2005. Checkstyle homepage. URL http://checkstyle. sourceforge. net/.
last accessed in March 14 (2005).

[8] Raymond P.L. Buse and Westley R. Weimer. 2010. Learning a Metric for Code
Readability. IEEE Transactions on Software Engineering (TSE) 36, 4 (July 2010),
546–558.

[9] B. D. Chaudhary and H. V. Sahasrabuddhe. 1980. Meaningfulness As a Fac-
tor of Program Complexity. In Proceedings of the ACM Annual Conference.
457–466. http://dl.acm.org/citation.cfm?id=810001&dl=ACM&coll=DL&CFID=
953873442&CFTOKEN=18528998.

[10] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[11] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC genomics 21, 1 (2020), 6.

[12] Jacob Cohen. 1988. Statistical power analysis for the behavioral sciences (2nd
edition ed.). Lawrence Earlbaum Associates.

[13] T. A. Corbi. 1989. Program understanding: Challenge for the 1990s. IBM Systems
Journal 28, 2 (1989), 294–306. http://dl.acm.org/citation.cfm?id=97124.

[14] Steve Counsell, Stephen Swift, Allan Tucker, and Emilia Mendes. 2006. Object-
oriented cohesion subjectivity amongst experienced and novice developers: an
empirical study. ACM SIGSOFT Software Engineering Notes 31, 5 (Sept. 2006),
1–10.

[15] Jonathan Dorn. 2012. A general software readability model. Master’s thesis.
University of Virginia.

[16] Sarah Fakhoury, Devjeet Roy, Adnan Hassan, and Vernera Arnaoudova. 2019.
Improving source code readability: theory and practice. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE, 2–12.

[17] Beat Fluri and Harald C. Gall. 2006. Classifying Change Types for Qualifying
Change Couplings. In Proceedings of the International Conference on Program
Comprehension (ICPC). 35–45.

[18] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. 2007. Change
distilling: Tree differencing for fine-grained source code change extraction. IEEE
Transactions on software engineering 33, 11 (2007).

[19] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. 2002.
Gene selection for cancer classification using support vector machines. Machine
learning 46, 1-3 (2002), 389–422.

[20] Tibor Gyimóthy, Rudolf Ferenc, and István Siket. 2005. Empirical Validation of
Object-Oriented Metrics on Open Source Software for Fault Prediction. IEEE
Transactions on Software Engineering (TSE) 31, 10 (October 2005), 897–910.

[21] Maurice H Halstead. 1977. Elements of software science. (1977).
[22] Yasutaka Kamei, Shinsuke Matsumoto, Akito Monden, Ken ichi Matsumoto, Bram

Adams, and Ahmed E. Hassan. 2010. Revisiting Common Bug Prediction Findings
Using Effort-Aware Models. In Proceedings of the International Conference on
Software Maintenance (ICSM). 1–10.

[23] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. In Advances in neural information processing systems. 3146–3154.

[24] Michele Lanza and RaduMarinescu. 2007. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media.

[25] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name? A Study of Identifiers. In Proceedings of International Conference on
Program Comprehension (ICPC). 3–12.

[26] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2007. Effec-
tive Identifier Names for Comprehension and Memory. Innovations in Systems
and Software Engineering 3, 4 (December 2007), 303–318.

[27] FrontEndART Software Ltd. [n. d.]. SourceMeter. https://www.sourcemeter.com/,
last accessed on March 15, 2019.

[28] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Advances in Neural Information Processing Systems 30,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.). Curran Associates, Inc., 4765–4774. http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf

[29] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. 2008. Using the Concep-
tual Cohesion of Classes for Fault Prediction in Object-Oriented Systems. IEEE
Transactions on Software Engineering (TSE) 34, 2 (2008), 287–30.

[30] Matias Martinez and Martin Monperrus. 2019. Coming: a tool for mining change
pattern instances from git commits. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE,
79–82.

[31] B. W Matthews. 1975. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA 2, 405 (1975),
442–451.

[32] Thomas J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software
Engineering (TSE) SE-2, 4 (1976), 308–320.

[33] Thilo Mende and Rainer Koschke. 2009. Revisiting the evaluation of defect
prediction models. In Proceedings of the International Conference on Predictor

Models in Software Engineering (PROMISE). 7:1–7:10.
[34] Qing Mi, Jacky Keung, Yan Xiao, Solomon Mensah, and Yujin Gao. 2018. Im-

proving code readability classification using convolutional neural networks.
Information and Software Technology 104 (2018), 60–71.

[35] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel Ó Cinnéide,
and Kalyanmoy Deb. 2016. On the use of many quality attributes for software
refactoring: a many-objective search-based software engineering approach. Em-
pirical Software Engineering 21, 6 (2016), 2503–2545.

[36] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-Françoise Le
Meur. 2010. DECOR: A Method for the Specification and Detection of Code and
Design Smells. IEEE Transactions on Software Engineering (TSE) 36, 1 (January-
February 2010), 20–36.

[37] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (2017), 3219–3253.

[38] Jevgenija Pantiuchina,Michele Lanza, andGabriele Bavota. 2018. Improving Code:
The (Mis) perception of Quality Metrics. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 80–91.

[39] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. 2011. A Simpler Model
of Software Readability. In Proceedings of the Working Conference on Mining
Software Repositories (MSR). 73–82.

[40] Kata Praditwong, Mark Harman, and Xin Yao. 2011. Software module clustering
as a multi-objective search problem. IEEE Transactions on Software Engineering
37, 2 (2011), 264–282.

[41] Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2011. Using Structural
and Textual Information to Capture Feature Coupling in Object-oriented Software.
Empirical Software Engineering (EMSE) 16, 6 (December 2011), 773–811.

[42] Devjeet Roy. 2020. Online Replication Package. https://github.com/devjeetr/
a-model-to-detect-readability-improvements-in-incremental-changes

[43] Witold R Rudnicki, Marcin Kierczak, Jacek Koronacki, and Jan Komorowski. 2006.
A statistical method for determining importance of variables in an information
system. In International Conference on Rough Sets and Current Trends in Computing.
Springer, 557–566.

[44] Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario Linares-
Vasquez, Denys Poshyvanyk, and Rocco Oliveto. 2019. Automatically Assessing
Code Understandability. IEEE Transactions on Software Engineering (2019), 1––1.
https://doi.org/10.1109/tse.2019.2901468

[45] Simone Scalabrino, Mario Linares-Vásquez, Rocco Oliveto, and Denys Poshy-
vanyk. 2018. A comprehensive model for code readability. Journal of Software:
Evolution and Process 30, 6 (2018), e1958.

[46] Simone Scalabrino, Mario Linares-Vasquez, Denys Poshyvanyk, and Rocco
Oliveto. 2016. Improving code readability models with textual features. In Pro-
ceedings of the International Conference on Program Comprehension (ICPC). 1–10.

[47] Ben Shneiderman and Richard Mayer. 1975. Towards a cognitive model of progam-
mer behavior. Technical Report 37. Indiana University.

[48] Thomas A. Standish. 1984. An Essay on Software Reuse. IEEE Transactions on
Software Engineering (TSE) 10, 5 (September 1984), 494–497.

[49] Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie. 1996. The
Effects of Comments and Identifier Names on Program Comprehensibility: An
Experiential Study. Journal of Program Languages 4, 3 (1996), 143–167.

[50] Rebecca Tiarks. 2011. What Maintenance Programmers Really Do: An Obser-
vational Study. In Proceedings of the Workshop Software Reengineering (WSR).
36–37.

[51] Nikolaos Tsantalis, Matin Mansouri, Laleh M Eshkevari, Davood Mazinanian,
and Danny Dig. 2018. Accurate and Efficient Refactoring Detection in Commit
History. (2018), 483–494.

[52] Sudhir Varma and Richard Simon. 2006. Bias in error estimation when using
cross-validation for model selection. BMC bioinformatics 7, 1 (2006), 91.

[53] Anneliese von Mayrhauser, A. Marie Vans, and Adele E. Howe. 1997. Program
Understanding Behaviour During Enhancement of Large-scale Software. Journal
of Software Maintenance: Research and Practice 9, 5 (September 1997), 299–327.

[54] Elaine J. Weyuker, Thomas J. Ostrand, and Robert M. Bell. 2010. Comparing
the effectiveness of several modeling methods for fault prediction. Empirical
Software Engineering (EMSE) 15, 3 (June 2010), 277–295.

[55] Ian R White, Patrick Royston, and Angela M Wood. 2011. Multiple imputation
using chained equations: issues and guidance for practice. Statistics in medicine
30, 4 (2011), 377–399.

[56] Claes Wohlin, Per Runeson, Höst Martin, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. 2000. Experimentation in Software Engineering - An Introduction.
Kluwer Academic Publishers.

[57] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. 1981. The Effect of Modu-
larization and Comments on Program Comprehension. In Proceedings of the
International Conference on Software Engineering (ICSE). 215–223.

[58] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li. 2018. Measuring Program
Comprehension: A Large-Scale Field Study with Professionals. IEEE Transactions
on Software Engineering (TSE) 44, 10 (Oct 2018), 951–976. https://doi.org/10.1109/
TSE.2017.2734091

11

http://dl.acm.org/citation.cfm?id=810001&dl=ACM&coll=DL&CFID=953873442&CFTOKEN=18528998
http://dl.acm.org/citation.cfm?id=810001&dl=ACM&coll=DL&CFID=953873442&CFTOKEN=18528998
http://dl.acm.org/citation.cfm?id=97124
https://www.sourcemeter.com/
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://github.com/devjeetr/a-model-to-detect-readability-improvements-in-incremental-changes
https://github.com/devjeetr/a-model-to-detect-readability-improvements-in-incremental-changes
https://doi.org/10.1109/tse.2019.2901468
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1109/TSE.2017.2734091

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Devjeet Roy, Sarah Fakhoury, John Lee, and Venera Arnaoudova

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[59] Robert K. Yin. 1994. Case Study Research: Design and Methods (2nd ed.). Sage
Publications.

[60] Yuming Zhou and Hareton Leung. 2006. Empirical Analysis of Object-Oriented
Design Metrics for Predicting High and Low Severity Faults. IEEE Transactions

on Software Engineering (TSE) 32, 10 (October 2006), 771–789.
[61] Thomas Zimmermann and Nachiappan Nagappan. 2008. Predicting defects

using network analysis on dependency graphs. In Proceedings of the International
Conference on Software Engineering (ICSE). ACM, 531–540.

12

	Abstract
	1 Introduction
	2 Study Definition and Design
	2.1 Research Questions
	2.2 Data Collection
	2.3 Source Code Analysis Tools
	2.4 Approach
	2.5 Evaluation

	3 Results
	3.1 RQ1: Can we use machine learning to capture readability improvements made in practice?
	3.2 RQ2: What features align with developers' perception of readability improvements in practice?
	3.3 RQ3: How does the proposed model perform when compared to existing state-of-the-art readability models?

	4 Discussion
	5 Related Work
	5.1 Source Code Readability Models
	5.2 Code Quality Metrics in Practice

	6 Threats to Validity
	7 Conclusion
	References

